

Animals

Zoos across the US, and around the world, house thousands of animal species.

In the US, there are currently over 600 formally managed captive

 breeding programs.
Why Cooperative Management?

A single zoo can usually only keep a small number of animals of a particular species...
...but a group of zoos can hold a viable population if those zoos work together to cooperatively manage their animals.

Studbooks

Studbooks

- document the history and pedigree of each individual in a captive population
- regional - contain records for animals in a region, International contains the records for several regions
- also contains all ancestors in the pedigree, even if some of those animals never lived in that region (US studbook includes some Indonesian ancestors)
- managed by Studbook Keepers
- form the basis of captive population management
- must be able to identify individuals-ear tags, etc.

Management is a combination of...

Demography

the study of a population's size, distribution, and structure

- number of animals
- animal ages
- birth and death rates
- number of offspring
- population target size

How and why do these characteristics change over time?

Age Structures

Predicting the Future...

Reproductive Planning

Or, how many births are needed in the next year

Demography Challenges

- What do we do with surplus offspring?

- If we restrict reproduction now, will we be able to increase it again later?
- Can we maintain our target size? Or, can we grow our population as quickly as we'd like?

Genetics

Goal: to maintain a population with high levels of genetic diversity and low inbreeding.

When genetic diversity is lost

Selecting Breeding Pairs

Mean Kinship: a measure of how related one individual is to the rest of the population.

(lower values $=$ less related)

MALES

SB\# MK \% Kiuvril nge location				
106	0.0000	1.00	53	SEDGWIG
	0.0000	1.00	35	SEDGWICK
139	0.0000	1.00	33	HONOLULU
251	0.0000	1.00	33	SACRAMMIT
71	0.0141	1.00	05	HOUSTON
437	0.0294	1.00	18	DALLAS WA
497	0.0294	1.00	17	SEDGWICK
566	0.0294	1.00	14	SAN ANTON
45	0.0368	1.00	32	DENVER
482	0.0368	1.00	17	SEDGWICK
50	0.0441	1.00	32	DENVER
589	0.0441	1.00	14	LOWRY
533	0.0515	1.00	15	MTTS CA
546	0.0588	1.00	15	SD-WAP
667	0.0588	1.00	2	SANDIEGOZ
661	0.0662	1.00	5	SANDIEGOZ

FEM ALES

SB\#	MK	\% Known	Age	Location
176	0.0000	1.00	45	BUSCH TAM
40	0.0000	1.00	32	BUSCH TAM
277	0.0000	1.00	32	BATONROUG
240	0.0000	1.00	27	HONOLULU
112	0.0294	1.00	32	HOUSTON
408	0.0294	1.00	19	SEDGWICK
451	0.0294	1.00	18	DALLAS WA
587	0.0294	1.00	14	SEDGWICK
52	0.0368	1.00	32	DENVER
605	0.0368	100	13	SEDGWICK
16	0.0441	1.00	32	DEIVVL
554	0.0441	1.00	15	SD-WAP
564	0.0441	1.00	15	SAN ANTON
655	0.0588	1.00	7	SANDIEGOZ
600	10588	1.00	7	DF
611	$? ? ?$	0.00	15	SEDGWICK

Selecting Breeding Pairs

- breed animals with low mks to maximize gene diversity retention
- breed pairs that will produce offspring with low inbreeding coefficients
- breed pairs with similar $m k s$ to avoid linking rare and common alleles in offspring, which helps improve future management

Challenges to Selecting Breeding Pairs

- individual characteristics
age, health, behavior, location

- social structuremanaged through husbandry
- institutional needsWants and Needs Survey
- unknown pedigree

Selecting Breeding Pairs

- its not just about mean kinship!
- age
- health
- behavior

- proven vs. non-proven breeders
- location
- institutional needs
- social structure

